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Deus ex machina (noun) 

de·us ex ma·chi·na | ˈdā-əs-ˌeks-ˈmä-ki-nə 

“An unexpected power or event that saves a situation that seems without hope, especially in 
a play or novel.” 

–Oxford Dictionary 

I.   INTRODUCING MACHINE LEARNING 

Traditional forecasting methods often provide poor macro forecasts. Techniques based 
on ordinary least squares (OLS) struggle to overcome several issues, including collinearity, 
dimensionality, predictor relevance, and nonlinearity. Some state-of-the-art forecasting 
models, including dynamic factor models, can help address collinearity and dimensionality 
problems, but do not address predictor relevance and nonlinearity problems. As a result, even 
state-of-the art forecasting models often result in large forecast errors. Furthermore, dynamic 
factor models perform particularly poorly when the variable to be predicted is volatile, such 
as output growth in many emerging market and developing economies. 

Machine learning (ML) methods present an alternative to traditional forecasting 
techniques. ML models can outperform traditional forecasting methods because they 
emphasize out-of-sample (rather than in-sample) performance and better handle nonlinear 
interactions among a large number of predictors. ML methods are specifically designed to 
learn complex relationships from past data while resisting the tendency of traditional 
methods to over-extrapolate historical relationships into the future. Indeed, a literature is 
beginning to emerge which suggests that ML methods often outperform traditional linear 
regression-based methods in terms of accuracy and robustness.2 

We develop a framework to use ML methods for macro forecasting. We use the 
framework to nowcast (and forecast) economic growth in Turkey and are able to reduce 
forecast errors by at least 30 percent relative to traditional models. Importantly for Turkey 
and other countries with volatile economies, the framework also better predicts large swings 
in the growth rate, suggesting that machine learning techniques could be an important part 
the macro forecasting toolkit of many countries. We also attempt to improve transparency 
and interpretability of ML forecasts by uncovering the contribution of each predictor to 
individual forecasts.   

                                                 
2 For example, Smeekes & Wijler (2016) and Carrasco & Rossi (2016) find that penalized ML methods tend to 
outperform traditional factor models in terms of forecast accuracy. The former also show that ML methods are 
more robust to model misspecification. Tu & Lee (2018) show that traditional factor models tend to be inferior 
to supervised factor models that perform variable selection. Kim & Swanson (2014) assess the predictive 
accuracy of both traditional, ML and ‘hybrid’ forecasting methods and find that the latter two dominate in most 
settings. Tiffin (2016), Jung et al. (2018), and Richardson et al. (2018) use different ML methods to forecast 
GDP growth for several countries. Smalter Hall (2018) employs ML methods to forecast unemployment in the 
United States and Medeiros et al. (2018) forecast inflation in Brazil. 
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II.   THE BASICS OF FORECASTING—A BIAS-VARIANCE TRADEOFF 

All forecasting methods aim to minimize expected forecast errors. Forecasting consists of 
selecting a function that maps indicator data to a forecast while minimizing a particular loss 
function. Suppose a researcher wants to forecast a variable 𝑦  (e.g., real GDP growth) using 
𝐾 predictor variables summarized in the 𝐾 × 1 vector 𝑋 , with the h-step ahead forecast of 𝑦  
denoted as 𝑦 :  

𝑦 = 𝑓(𝑋 ) + 𝜖  

where 𝜖  is an error term. The goal is to forecast 𝑦  by choosing the function 𝑓(⋅) that 
minimizes the average loss: 

min
( )

𝐿 𝑦 – 𝑓(𝑋 )  

where 𝐿(⋅) is a loss function that assigns relative weights to different forecast errors. If the 
loss function is quadratic, for example, the expected loss to minimize by picking the function 
𝑓(𝑋 ) = 𝑦  can be decomposed as (James et al., 2013): 

𝐸((𝑓(𝑋 )– 𝑦 ) )

exp. squared forecast error

= [𝐸(𝑦 )– 𝑓(𝑋 )]

squared bias

+ 𝑉𝑎𝑟[𝑦 ]
variance

+ 𝜎
irreducible error

 (1) 

where the first term on the right-hand side is the squared bias of the forecast, the second term 
is the variance of the forecast and the third term is the idiosyncratic contribution of the error 
term to total loss. 

The optimal forecast uses the past to predict the future without over-extrapolating. 
Minimizing the loss function (1) amounts to picking the function 𝑓(𝑋 ) that minimizes the 
expected sum of the squared bias and the variance of the forecast. Unfortunately, it is typically 
impossible to reduce both terms simultaneously (Annex I). This bias-variance tradeoff is a 
central concept in both the forecasting and the machine learning literatures (James et al., 
2013). In general, more complex forecasting models exhibit lower bias, because they better 
capture nuances in the mapping from 𝑋  to 𝑦 .3 However, as complex models provide 
sharper predictions, they are also more likely to capture perturbations (or ‘noise’) in the 
historical data that are uninformative for future predictions. This tendency, known as 
‘overfitting’, increases the variance of forecasts, potentially resulting in higher forecast errors. 

                                                 
3 There is no universal definition of complexity in the ML literature, as the degree of complexity often depends 
on the nature of the underlying learning model. Common sources of complexity are the number of included 
variables (e.g., penalized linear models), the number of parameters a model ‘learns’ (e.g., random forest), the 
number of relationships specified (e.g., neural networks), and the number of observations used per individual 
prediction (e.g., nearest neighbors).  
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A.   Shortcomings of OLS-Based Forecasting Methods 

Forecasting methods based on OLS struggle to optimize the bias-variance tradeoff. Suppose 
the predictors are mean zero and the error term is i.i.d. 𝑁(0, 𝜎 ) and independent of 𝑋  (Stock & 
Watson, 2006). With OLS, the expected loss under the quadratic loss function becomes: 

𝐸 𝑓(𝑋 )– 𝑦 = [𝐸(𝑦 )– 𝑓(𝑋 )] + (𝑋 𝑋 + 1)𝜎   (2) 

and several issues arise, including: 

 Collinearity. The variance of the OLS forecast is increasing in the degree of 
correlation between predictors. To see this, note that the expected value of the inner 
product 𝑋 ’𝑋  (for a given observation) equals the covariance of 𝑋 . The more 
correlated the predictors are, the higher this covariance. 

 Dimensionality. The variance of the OLS forecast is increasing in the number of 
predictors, K. To see this, suppose the predictors 𝑋  are orthogonal such that 

∑ 𝑋 𝑋 = 𝐼  (a 𝐾 × 𝐾 identity matrix). In this case it can be shown that (Stock & 

Watson, 2006): 

𝑦 ∼ 𝑁 𝐸 𝑦 ,
𝑐 𝐾 𝜎

𝑇
 

where c is a constant. For a given number of historical observations, T, the variance of 
the forecast is proportional to the number of predictors.  

 Predictor relevance. Related to dimensionality, irrelevant predictors unambiguously 
increase the forecast error because they do not reduce bias, but increase the forecast 
variance by increasing 𝑋 ’𝑋 .  

 Nonlinearity. If the data-generating process (DGP) is non-linear, the OLS forecast is 
biased. To see this, note that the first term on the right-hand side of (2) is minimized at 
zero if 𝑓(𝑋 ) = 𝐸(𝑦 ), which is the case if the underlying model is linear, i.e., 
𝑓(𝑋 ) = 𝛽’𝑋 . 

State-of-the-art forecasting techniques such as dynamic factor models can address some 
of these issues. Specifically, factor models (Annex II) aim to address collinearity and 
dimensionality by summarizing the variation in the predictor data using a small set of 
orthogonal factors.4 In particular, if the selected indicators capture the underlying forces that 
affect the forecasted variable, and there is a high degree of co-movement among indicators, 
this variation can be explained by a small set of latent variables (Sargent & Sims, 1977).  

                                                 
4 For a detailed review, see Stock & Watson (2006, 2011, 2012, 2017) and Bai & Ng (2008). 
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Factor models do not, however, address predictor relevance or nonlinearity. In 
attempting to summarize the information content of a large number of predictors into a small 
number of factors, there may be settings where the predictors follow a factor structure, but 
the factors do not predict the forecast variable (Tu & Lee, 2018). While factor models can 
help reduce dimensionality, they do not provide a means to identify the most relevant 
predictors. Furthermore, factor models rely on the assumption that the DGP follows a linear 
factor structure, which may not necessarily be the case.   

B.   The Advantages of Machine Learning Methods 

Unlike traditional forecasting techniques, ML methods are specifically designed to 
optimize the bias-variance tradeoff. In particular, ML models can address the above issues 
with which traditional forecasts have struggled because they select predictors to optimize out-
of-sample (rather than in-sample) performance and are better able to handle nonlinear 
interactions among a large number of predictors (Annex III). In this study we focus on three 
specific ML methods: Random Forest; Gradient Boosted Trees; and Support Vector Machines. 

Random Forest (RF) is an algorithm that uses forecast combinations of multiple 
decision trees to construct an aggregate forecast. The key elements of RF include: 

 Decision trees. A decision tree is an algorithm that repeatedly separates categorical data 
into two groups, with each split chosen by the algorithm to yield the largest reduction in 
the forecast error of the variable of interest. Regression trees are a type of decision tree 
used for predicting a continuous variable and are particularly well suited for nonlinear 
relationships. A regression tree minimizes the forecast error by repeatedly splitting the 
continuous data into two groups, with a prediction for each group that is based on the 
mean of that group’s data (Hastie et al., 2009).5 Decision trees can be as complex (i.e., 
long) as needed to fit to the in-sample data well. However, they often ‘overfit’ the in-
sample data at the expense of out-of-sample performance Also, decision trees use local, 
rather than global, optimization which can create path dependence and model 
instability. Modifications to the basic decision tree, such as random sampling, are often 
made to prevent overfitting and improve model performance.  

 Random sampling. RFs modify the decision tree approach in two ways to maximize the 
information content of the data by using subsamples of observations and predictors. 
First, they use bootstrap aggregation (‘bagging’) by building each individual tree on 
only a random sample of the observations in the training data. Second, at each split in 
the tree, the RF algorithm uses only a random subsample of the predictors. Bagging 
therefore generates a large number of uncorrelated trees. Individually, the trees tend to 
have low bias but poor out-of-sample accuracy due to high variance (i.e., they overfit 

                                                 
5 Formally, regression trees pick regions 𝑅  and region predictions 𝑐  (for M different regions) and: 
𝑚𝑖𝑛{ , }

∑[𝑦 − ∑ 𝑐 𝐼(𝑋 ∈ 𝑅 )]  
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on the training data). However, for a large enough number of uncorrelated trees, these 
errors tend to average out to zero. RF is one of the most popular ML algorithms 
available because it is computationally easy to use and requires almost no tuning of 
model parameters. This makes it an ideal algorithm for forecasting on time-series data 
with relatively few observations.  

Gradient Boosted Trees (GBT) is an algorithm that constructs sequential decision trees 
to learn from previous trees’ errors. Just like the RF, GBT combines individually-weak 
trees into a robust forecast. The algorithm starts out by training an initial decision tree on the 
historical data. It then uses the prediction errors from the first tree to train a second tree. In 
turn, the errors from the second tree are used to train the third tree, etc. After the final 
iteration, the algorithm uses the sum of the individual predictions for the final forecast.6  
Whereas RF combines relatively deep trees with low bias and high variance, GBT combines 
relatively shallow trees with high bias and low variance. As each subsequent tree targets the 
bias from the previous tree, the bias errors of subsequent trees tend to sum towards zero, 
resulting in an overall prediction with both low bias and low variance.  

Support Vector Machine (SVM) is an algorithm that constructs hyperplanes to 
partition predictor combinations and make a point forecast for each of the sections. 
Unlike tree-based algorithms, SVM is similar to kernel regression with a penalty imposed on 
the use of coefficients (i.e., penalized kernel regression). Formally, SVM regressions find the 
function 𝑓(𝑋 ) = 𝑋 ’β + 𝑏 and observation-specific slack constants ζ  and ζ∗ that minimize 
β’β + 𝐶 ∑(ζ + ζ∗), subject to 𝑦 − 𝑓(𝑋 ) ≤ ϵ + ζ  and 𝑓(𝑋 ) − y ≤ ϵ + ζ∗. The complexity 
parameters ϵ and C govern the acceptable margin and the penalty imposed on observations 
that lie outside this margin. The cost parameter, C, mainly determines the degree of model 
complexity. If C = 0, the algorithm disregards individual deviations and constructs the 
simplest hyperplane for which every observation is still within the acceptable margin 𝜖. For 
sufficiently large C, the algorithm will construct the most complex hyperplane that predicts 
the outcome for the training data with zero error, i.e. the algorithm will fit the training data 
perfectly. Through cross-validation, SVM finds the optimal value of C that balances this 
bias-variance tradeoff and maximizes out-of-sample accuracy on the historical data. 

III.    A FRAMEWORK FOR MACRO FORECASTING WITH MACHINE LEARNING 

A.    Limiting Preselection 

We apply the framework to Turkey, a country for which traditional forecasting 
techniques have been unsatisfactory. We collect a database of country-specific and global 
indicators, with 234 separate series in total (Tables A5.1 and A5.2). The data consist of an 
array of mixed-frequency (monthly and quarterly) leading and coincident indicators from 

                                                 
6 Let 𝐹 (𝑋 ) denote the in-sample prediction from the first decision tree. The second tree thus constructs the tree 
that solves 𝑚𝑖𝑛 ( ) ∑[𝑦 – 𝐹 (𝑋 )– 𝐹 (𝑋 )]  , the third tree solves 𝑚𝑖𝑛 ( ) ∑[𝑦 – 𝐹 (𝑋 )– 𝐹 (𝑋 ) − 𝐹 (𝑋 )]  
etc. With three trees, the final forecast equals 𝐹 (𝑋 ) + 𝐹 (𝑋 ) + 𝐹 (𝑋 ). 
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Haver Analytics. We then apply some basic transformations to each raw indicator. In 
addition to deflating nominal indicators where appropriate and including 12 lags, we include 
two transformations of each indicator series. For stationary variables (e.g., capacity 
utilization, consumer confidence), we use the level and quarter-on-quarter difference. For 
non-stationary variables (e.g., production, money) we take first- and second-order log 
differences. Moreover, we construct several indicators such as the sovereign term spread, 
sovereign yield spread, the US sovereign term spread, and the US high yield spread.7   

We use hard thresholding to help address the dimensionality problem of a large set of 
predictors. More data is not always better and can increase forecast errors even when using 
dimensionality reduction techniques (Boivin & Ng, 2006). Hard thresholding (Bai & Ng, 
2007) consists of regressing the forecast variable on its lags and each individual indicator and 
selecting all indicators with an absolute t-statistic above a certain threshold. In this case, the 
threshold is obtained by comparing out-of-sample performance of forecasts across a range of 
thresholds and choosing the threshold that delivers the lowest forecast errors. 

B.   Identifying Complementary Algorithms 

The chosen ML models (RF, GBT, and SVM) are relatively simple and accessible. All 
three models require little parameter tuning and are thus less likely to overfit than other types 
of ML models.8  In addition, all three models are computationally relatively inexpensive. 

The three models are also complementary. We combine the individual ML models into 
several ensembles. Ensembles can lower forecast errors relative to any of the individual 
models by producing a single, weighted forecast of the individual models. Ensembles tend to 
outperform individual forecasts, especially when the models are relatively independent yet 
similar in forecast accuracy (Timmermann, 2006). In this case, we combine the forecasts of 
the three models using equal weights (Ensemble 1), inverse root mean squared error (RMSE) 
weights (Ensemble 2) and inverse-RMSE rank weights (Ensemble 3).   

Our ensembles combine the best aspects of the individual models. More complex ML 
methods such as SVM tend to overfit when training data is relatively limited (e.g., short time 
series), resulting in predictions that are sensitive to small perturbations in the leading 
indicators. As such, SVM acts as a counterweight against GBT and RF, which tend to 

                                                 
7 A common drawback of assembling a large dataset is that many series may have missing observations for a 
significant period of time. ML techniques offer a way to impute missing values in order to take advantage of all 
available indicators and observations. Specifically, the algorithm we use initially imputes the missing values 
with each indicator’s median, then runs a Random Forest. It then replaces the missing value of an indicator with 
the weighted average of the non-missing observations, where the weights are the proximities (i.e., the fraction 
of final nodes shared by two observations) of the random forest. 

8 Avoiding overfitting to a complex model is our main reason for not deploying neural networks, which tend to 
require large datasets for good performance. Indeed, in Jung et al. (2018) elastic net tends to outperform 
recurrent neural networks when forecasting GDP growth. We avoid linear penalized regression methods such as 
ridge, LASSO and elastic net because they are sensitive to large, unexpected changes in predictor values that are 
not in the training dataset. As a result, forecasts using these methods tend to be unstable for datasets like ours. 
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outperform during stable periods of growth, whereas the SVM is more likely to pick up the 
effect of extreme shocks.  

C.   Evaluating Performance and Interpreting Results 

To evaluate model performance, we use rolling out-of-sample forecasts. This method 
provides an intuitive test of how the models would have performed in the past. Specifically, 
for each individual nowcast, we split the historical data available at the time of the nowcast 
into a training set and a test set and use cross-validation techniques to tune the parameters of 
the model (Annex III). Once calibrated, we then run the model using all historical data 
available at that time to obtain each individual nowcast, and ultimately assess the 
performance of the model.  

We also assess the importance of each predictor by constructing variable importance 
measures for each of the ML models. To improve transparency and interpretability of our 
ML forecasts, we identify the contribution of each predictor to individual forecasts. Shapley 
Values provide an intuitive summary of each variable’s contribution to the forecast’s 
deviation from its historical mean (Annex IV).  

IV.   RESULTS—MORE ACCURATE FORECASTS 

Individual ML methods can improve forecast performance. Figure 1 plots the RMSE of 
the benchmark factor model nowcast, against the 
RSME of the three machine learning models 
(RF, GBT and SVM) for the 2012– 2019 
period.9  The benchmark has a RMSE of 1.66, 
which corresponds to a mean absolute deviation 
of about 1.2 percentage points per nowcast. 
Using RF, GBT, or SVM reduces the RMSE by 
24, 22, and 18 percent, respectively. We find 
similar improvements for the forecast models 
(Figure A5.1), where the RF and GBT 
outperform the benchmark by 18 and 22 percent.  

ML methods not only increase average accuracy, but also better predict economic 
volatility. Figure 2 plots the rolling out-of-sample nowcasts against actual quarterly real GDP 
growth. While the forecasts of the benchmark factor are relatively stable, the three ML 
methods all better predict the large growth swings seen in 2014, 2016 and 2018–19. Figure 3 
plots the RMSE for the different nowcast models for ‘volatile’ quarters only, where we define a 
volatile quarter as one with a more than 3 percentage points higher or lower growth rate than 

                                                 
9 We compare the performance of the ML models and ensembles against a more traditional forecasting model. 
As a benchmark, we use a static dynamic factor model (DFM). We employ three factors, as is standard in the 
DFM literature (Barhoumi et al., 2013). 

Figure 1. Nowcast RMSE  
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the previous quarter. In this setting, SVM outperforms any of the models, improving upon the 
factor model by 39 percent. Moreover, the ML methods tend to move closer to the actual 
quarterly growth rate as we get closer to the end of the quarter. These patterns are similar in 
case of the forecast (Figure A5.2). 

Figure 2. Individual Model Nowcasts vs. Actual Real GDP Growth 
(percent, quarter on quarter seasonally adjusted) 

 
The accuracy of ML methods increases with the availability of training data. Figure 4 
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data become available to train and test the models. From 2012 to 2019, RF and GBT gain 
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Different ML methods have different strengths, making them ideal as combinations in 
ensembles. RF seems to have good predictive performance overall, but does not fully capture 
the large swings in growth (Figure 2). Predictions from GBT are a bit more volatile, but also 
better capture the large swings in growth. SVM appears best at capturing the large swings, 
but at the expense of even more volatility.  

Ensembles exploit the different strengths of the individual ML models to further 
improve predictions. Figure 5 plots the RMSE of the three ensemble nowcasts and the 
benchmark factor model for the 2012–2019 period. The ensembles differ little in terms 
overall performance. All outperform the benchmark by about 33 percent, which is an 
improvement of at least 9 percentage points compared to the individual models. The 
outperformance of the ensembles is also more stable over time. 

Figure 5. Ensemble Model Nowcasts vs. Actual Real GDP Growth 
(percent, quarter on quarter seasonally adjusted) 
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ascending order of relative importance. Figure 6 plots the 25 most importance 
predictors for the Turkey nowcast model in July 2019. In addition to the previous 
quarter’s GDP growth, the nowcast mainly relies on changes in the stock market, 
imports, business confidence, unemployment and the manufacturing PMI. 

 Second, we use Shapley Values to decompose recent Turkey nowcasts into 
contributions of different predictor categories. Figure 6 also plots the Shapley Values 
by categories for three Turkey nowcasts. Relative to the historic mean, lower 
production indicators and higher inflation contributed to lower forecasts in all months. 
Over time, the nowcast mainly deteriorated due to worsening financial conditions and 
consumption indicators. 

Figure 6. Variable Importance and Shapley Values 

  

V.   CONCLUSIONS 

Machine learning techniques can improve forecasting performance relative to 
traditional models. Techniques based on OLS struggle to overcome several issues, 
including collinearity, dimensionality, predictor relevance, and nonlinearity. As a result, even 
state-of-the art forecasting models often result in large forecast errors, especially when the 
variable to be predicted is volatile, such as output growth in many emerging market and 
developing economies. ML models can outperform traditional forecasting methods because 
they emphasize out-of-sample (rather than in-sample) performance and better handle 
nonlinear interactions among a large number of predictors. ML methods are specifically 
designed to learn complex relationships from past data while resisting the tendency of 
traditional methods to over-extrapolate historical relationships into the future. 
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ANNEX I. THE BIAS-VARIANCE TRADEOFF 

We demonstrate the bias-variance tradeoff with two simple examples. Suppose a researcher 
has T periods of historical data on 𝑦  and a set of predictors, 𝑋 . The least complex model 
would simply forecast the historical mean of 𝑦 . Doing so leads to substantial bias as it is 
unlikely that 𝑦  is constant over time. However, the variance of this simple forecast is 
minimized. At the other extreme, a forecaster could pick one historical observation that it 
believes to be most representative (‘closest’) to the current environment in terms of 𝑋 , and 
use this observation’s historical outcome as the forecast. Such a complex forecast will have 
low bias but high variance. 

The K-Nearest Neighbors algorithm is one way to minimize the bias-variance tradeoff. The 
two extreme types of forecasts described above are examples of the K-Nearest Neighbors 
(KNN) algorithm. This ML method uses observations in the historical data closest to 𝑋  to 
form the forecast 𝑦 , which is formally defined as (Hastie et al., 2009): 

𝑦 =
1

𝐾
𝑦

∈ ( }

 

where 𝑁 (𝑋 ) is the neighborhood of the forecast defined by the K closest points n in the 
historical sample. This neighborhood is usually constructed using the Euclidian distance. 
KNN has a convenient closed form expression for expected loss: 

𝐸((𝑓(𝑋 )– 𝑦 ) ) = 𝑓(𝑋 ) − ∑ 𝑦∈ ( ) + σ + 1  

which nicely summarizes the bias-variance tradeoff. The squared bias (first term on RHS) is 
monotonically increasing in K as observations ‘farther’ from 𝑋  tend to be less informative 
for the forecast. The variance (second term on RHS) is monotonically decreasing in K. As a 
result, the K that minimizes forecast errors tends to be somewhere in between the two 
extreme cases. Figure 1.1 expresses this bias-variance tradeoff visually. 

Figure 1.1. Model Complexity and the Bias-Variance Tradeoff 

 

Source: Smalter Hall (2018) 
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ANNEX II. STATIC DYNAMIC FACTOR MODELS 

Traditionally, the factor model literature assumes predictors take the form (Stock & Watson, 
2006; Smeekes & Wijler, 2016): 

𝑥 = 𝜆 (𝐿) 𝑓 + 𝑒  

where 𝑥  is the predictor k time series observed at time t with zero mean and unit variance. 
𝑓  is a 𝑄 × 1 vector containing latent factors and 𝑒  is a idiosyncratic disturbance term. 
𝜆 (𝐿) is a lag polynomial of order 𝐾  , often referred to as the “dynamic factor loadings.” 
Both the factors and disturbances are assumed to be uncorrelated at all leads and lags. We 
also assume the forecast variable admits a factor structure: 

𝑦 = 𝜆 (𝐿)’𝑓 + 𝑒  

the single forecasting equation for 𝑌  from (X) takes the form: 

𝑦 = 𝛽(𝐿)𝑓 + 𝛾(𝐿)′𝑌 + 𝜖  

where 𝛽(𝐿)  is a lag polynomial, and 𝜖  is a conditional mean zero disturbance term. (Y) 
can be estimated using MLE, although this is computationally demanding and only consistent 
under somewhat restrictive assumptions. As a result, it is standard in the macro forecasting 
literature to rewrite the dynamic factor model summarized in (X) and (Y) in its static form, 
which can be estimated using principal components analysis (PCA).  

If the lag polynomials 𝛽(𝐿) and 𝜆 (𝐿) have finite order 𝐾 , we can rewrite (X) and (Y) as 
(Stock & Watson, 2006): 

𝑋 = Λ𝐹 + 𝑢  

𝑦 = 𝛽 ’𝐹 + 𝛾(𝐿)𝑦 + v  

Where Λ and 𝐹  represent unobserved factor loadings and factors. 𝑢  is an error term that is 
i.i.d. 𝑁(0, 𝜎 ) and independent of 𝐹 . We can now recast estimating the general model as 
(Smeekes & Wijler, 2016): 

𝑦 = 𝑓(Λ𝐹 + 𝑢 ) + 𝜖  
For a given estimated Λ and 𝐹 , a static factor model assumes 𝑓(⋅) is linear and thus runs 
OLS such that: 

𝑦 = (𝐹 Λ)’𝛽 

In this case, expected mean loss can be decomposed as: 

𝐸 𝑓(𝑋 )– 𝑦 = [𝐸(𝑦 )– 𝑓(𝑋 )] + (𝐹 Λ)’(𝐹 Λ)
𝑉(𝑢 + 𝜖 )

𝑇
+ 𝑉(𝑢 + 𝜖 ) 
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ANNEX III. MACHINE LEARNING AND CROSS VALIDATION 

Any ML algorithm can be cast as a series of general steps. ML methods are designed to find 
the optimal degree of complexity of a model that maximizes out-of-sample forecast accuracy. 
Suppose a researcher can pick 𝑓(⋅) from a class of models (e.g., linear, nearest neighbors). 
Given the model class, we can represent this as the researcher selecting parameters 𝛽 and 𝛼: 

min
,

𝐿 𝑦 − 𝑓(𝑋 , 𝛽)  s.t. 𝛽 ∈ Θ(𝛼) 

 
where 𝛽 determine the specific function within the model class, and 𝛼 are ‘tuning 
parameters’ or ‘regularizers’ that determine the potential model complexity by constraining 𝛽 
to be in Θ(𝛼). The table below summarizes α and β of popular ML algorithms. Any ML 
algorithm consists of the following steps: 

(a) For every degree of model complexity α, find the model configuration β that 
maximizes forecast accuracy on the training data.  

(b) Forecast on the test data using this model configuration β.  

(c) Across all possible α, pick the degree of model complexity α that maximizes forecast 
accuracy on the test data. 

This process of finding the optimal model parameters is called cross validation (CV). With 
CV, the entire data set is split into multiple subgroups (‘folds’), which are all used as separate 
test sets. In this paper, we use 10 folds to tune the model complexity parameters.  

Class Model  𝛃 𝛂 (most common) 

Linear OLS Linear coefficients 

 

# of variables (e.g., forward stepwise regression) 

Ridge 𝐿  norm penalty 

LASSO 𝐿  norm penalty 

Elastic Net Overall penalty, LASSO/ridge weight 

Tree-based Decision tree Splits Depth, # of leaves, observations per leaf 

Random 

forest 

Splits, aggregation rule (…), # of variables, observations per bootstrap 

Boosted Trees Splits (…), # of iterations 

Prototype methods KNN Sets of nearest 

neighbors 

K, weighting of neighbors 

Support Vector Machines Linear Linear coefficients Cost 

Polynomial Coefficients Cost, scale, degree 

Exponential Coefficients Cost, decay factor 
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Figure A3.1. Decision Tree Example 

 

Notes: Figure plots a hypothetical decision tree nowcasting real GDP growth at time t using lags of real GDP 
growth, stock market growth, and the US term premium. Each leaf contains two training observations, and the 
trained decision tree predicts the average observed GDP growth of these two observations. 

Figure A3.2. Random Forest Example 

 
Notes: Figure plots a hypothetical decision Random Forest nowcasting real GDP growth at time t using lags of 
real GDP growth, stock market growth, and the US term premium. Each tree uses different observations and 
considers different variables at each split. In this example, each leaf contains only one training observation. The 
trained RF predicts the average of the GDP growth rates of the leaves that the new observation belongs to. 
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ANNEX IV. INTERPRETING FORECASTS: SHAPLEY VALUES 

Shapley Values can help with the interpretation of the results of ML forecasts. Shapley Values 
are a concept from coalitional game theory that measures the contribution of each player in a 
game when the game’s payoff depends on interactions (‘coalitions’) between the players 
(Shapley, 1953). They are constructed as the mean of each player’s marginal contributions for 
every possible combination of other player’s actions. In the context of ML methods, Shapley 
Values measure each variable’s contribution to an individual prediction’s deviation from the 
historical mean. For an OLS-based model, these contributions are the same as the predictor’s 
coefficient multiplied by its specific value. Shapley Values are thus particularly useful for 
decomposing predictions from methods with interactions among predictors (e.g., a Random 
Forest).  

The forecast decomposition using Shapley Values can be demonstrated with an example. 
Suppose we have trained an ML model to predict real GDP growth. The model predicts 5 
percent for a certain period in which: (i) nominal credit growth is above 10 percent; and (ii) 
the country’s major trading partner is expanding. We want to decompose this prediction into 
contributions of the two predictors (credit growth and trading partner growth). The matrix 
below summarizes the model’s predictions contingent on the values of the two predictors. In 
this case, the two variables act as complements. The average marginal contribution of credit 
growth being above 10 percent is 4.5 percent, and the average marginal contribution of the 
trading partner expanding is 1.5 percent. If we assume the historical mean of the model 
forecast is 1 percent, the Shapley Values for credit growth and trading partner expansion 
would be 3 percent and 1 percent, respecitvely.1 

 Credit growth>10% Credit growth 
random 

Marginal Contribution 

Trading partner 
expanding 

5% 1% 
1.5% =

5 − 4 + 1 − (−1)

2
 

Trading partner’s 
state random 

4% -1%  

Marginal 
contribution 

4.5% =
5 − 1 + 4 − (−1)

2
   

1  3.0 = (5 − 1) ⋅
.

. .
 ; 1.0 = (5 − 1) ⋅

.

. .
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ANNEX V. ADDITIONAL FIGURES AND TABLES 

Figure A5.1. Forecast RSME 
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Figure A5.2. Rolling Out-of-Sample Forecasts vs. Actual Real GDP Growth 
(percent, quarter on quarter seasonally adjusted) 
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Table A5.1. Stationary Variables—Level and First Difference 

 Consumer Confidence Capacity Utilization: Consumer Goods 
Capacity Utilization: Intermediate Goods Capacity Utilization: Investment Goods 
Capacity Util: Manufacture of Other Non-metallic 
Mineral Prods 

CCI: Buying Time of Durables [Present] 

CCI: Assmt on Consumer Price Chg Rate [Last 
12 Mo] 

Real Sector Confidence Index  

Real Sec Conf Index: Tot Amt of Orders [Curr Sit] Real Sec Conf Index: Stocks of Fin Goods [Curr Sit] 
Real Sec Conf Index: Vol of Output over Next 
3 Months 

Real Sector Conf Index: Employment over Next 
3 Months 

Real Sec Conf Index: Tot Amt of Orders Past 
3 Months 

Real Sector Conf Index: Exp Orders over Next 
3 Months 

Real Sector Conf Index: Fixed Investment Expend Real Sector Conf Index: Gen Business Situation 
CCI: Expect for Wage Chg Rate [12M vs Past 12M] CCI: Number of Ppl Unemployed Exp. [Next 12M] 
Reference Ask Rate: 1-Month Reference Ask Rate: 3-Month 
Reference Ask Rate: 9-Month 1 Week Repo Rate [Policy Rate] 
Late Liquidity Borrowing Rate Late Liquidity Lending Rate 
Overnight Borrowing Rate Overnight Lending Rate 
Reference Bid Rate: 3-Month Labor Force Survey: Labor Force Participation Rate 

Labor Force Survey: Employment Rate Labor Force Survey: Unemployment Rate 
Unemployment Rate Official/policy interest rates 
10-year interest rates Gross ED, percent of GDP 
Current Account, percent of GDP BoP, percent of GDP 
Now-Casting Index (NCI) World Uncertainty Index 
Manufacturing PMI Sovereign CDS Spread 
Equity Fund Flows, monthly percent  Bond Fund Flows, monthly percent 
Bank Loans Tendency Survey, Enterprises, Expected Bank Loans Tendency Survey, Housing, Expected 
Bank Loans Tendency Survey, Funding Conditions, 
Expected 

JPM Global Composite PMI 

JPM Global Manufacturing PMI US Corporate High Yield 
US Federal Funds Effective Rate US 10-year Treasury Yield 
World Uncertainty Index Sentix Economic Expectations 
Sentix Current Economic Situation CBOE VIX 
CBOE 10-year Treasury VIX Real short rate 
Real long rate Term spread (long rate—short rate) 
Long dollar spread (long rate – US 10-year yield) Real M2 growth 
Real US Federal Funds Rate Real US 10 year 
Real US term spread (10-year yield – FFR) US credit spread (high yield – 10-year yield) 
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Table A5.2. Non-Stationary Variables—First and Second Log Difference 
(Y: in real terms) 

Gross Domestic Product (Y) Industrial Production 
Industrial Production: Mining & Quarrying Industrial Production: Manufacturing 
IP: Intermediate Goods  IP: Durable Consumer Goods 
IP: Nondurable Consumer Goods  IP: Energy 
IP: Capital Goods  Automobile Production 
Truck Production Const Permits: Buildings 
Const Permits: One Dwelling Residential Buildings Const Permits: 2+ Dwelling Residential Buildings 
Const Permits: Residences for Communities Const Permits: Hotels & Similar Buildings 
Const Permits: Office Buildings Const Permits: Wholesale & Retail Trade Buildings 
Const Permits: Traffic & Communication Buildings Const Permits: Industrial Buildings & Warehouses  
Const Permits: Public Entertainment Const Permits: Other Nonresidential Buildings 
Const Permits: Buildings  Const Permits: One Dwelling Residential Buildings  
Const Permits: 2+ Dwelling Residential Buildings  Registered Motor Vehicles 
Registered Motor Vehicles: Cars Registered Motor Vehicles: Trucks 
Spot Exchange Middle Rate, NY Close: U.S. CPI Based Real Effective Exchange Rate 
JPMorgan Real Broad Effective Exchange Rate 
Index, PPI Based 

PPI Based Real Effective Exchange Rate 

Exchange Rate, Selling (TL/Euro) Exchange Rate, Selling (TL/100 Yen) 
Exchange Rate, Selling (TL/Pound) Exchange Rate, Selling (TL/US$) 
Foreign Trade: Total Merchandise Imports, c.i.f. BOP: Current Account 
BOP: Current Acct: Goods, Services & Primary 
Income 

BOP: Current Account: Goods And Services  

CB Balance Sheet: Assets CB Balance Sheet: Liabilities 
CBBS: Liabilities: CB Money: Reserve Money: 
Deps of Banking Sector 

CB Bal Sheet: Liabilities: CB Money: Reserve 
Money: Currency Issued 

CBBS: Liabilities: CB Money: Reserve Money: 
Deposits of Nonbank Sector 

CB Balance Sheet: Foreign Liabilities 

CB Balance Sheet: Liabilities: Central Bank Money CB Bal Sheet: Domestic Assets : Treasury: Other 
Consumer Loans and Credit Cards Banking Sector Credit Vol: Deposit Money Banks' 

Loans  
ISE National 100 Stock Price Index (Y) Labor Force Survey: Total Labor Force 
Labor Force Survey: Employment Labor Force Survey: Unemployment 
Total Labor Force Employment 
Unemployment Labor Force Survey: Population, 15 Years & Over 
Labor Force Survey: Nonagricultural Unemployment 
Rate 

Labor Force Survey: Not in Labor Force 

CPI: All Items CPI: Food and Non-alcoholic Beverages 
CPI: Alcoholic Beverages and Tobacco CPI: Clothing and Footwear 
CPI: Housing, Water, Electricity, Gas and Other 
Fuels 

CPI: Furniture/Furnishings/Carpets/Other Floor 
Coverings 

CPI: Health CPI: Transport 
CPI: Communication CPI: Recreation and Culture 
CPI: Education CPI: Restaurants and Hotels 
CPI: Miscellaneous Goods and Services M2 
Gross ED, nominal PPI 
EPI IPI 
ToT Housing Prices (Y) 
Manufacturing Shipments Retail Sales, value 
Exports, value Gross Operating Surplus or Corporate Profits (Y) 
Nominal Final Domestic Demand (Y) Earnings, industry (Y) 
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Earnings, trade and services (Y) Earnings, construction (Y) 
Exports, capital goods, volume Exports, intermediate goods, volume 
Exports, consumption goods, volume Imports, capital goods, volume 
Imports, intermediate goods, volume Imports, consumption goods, volume 
House sales Total Tourism Income (Y) 
Total Number of Visitors Retail sales, food, volume 
Retail sales, non-food, volume Retail sales, automotive fuel, volume 
Exports: Motor Vehicles and Trailers (Y) Domestic Taxes on Goods and Services (Y) 
Stamp Duties (Y) Income Taxes (Y) 
Government: Compensation of Employees (Y) Government: Social Security Contributions (Y) 
Government: Goods and Services Purchases (Y) Government: Capital Expenditures (Y) 
Industrial Domestic Turnover: Intermediate (Y) Industrial Domestic Turnover: Durable (Y) 
Industrial Domestic Turnover: Nondurable (Y) Industrial Domestic Turnover: Capital Goods (Y) 
Industrial Domestic Turnover: Energy (Y) Industrial Non-Domestic Turnover: Intermediate (Y) 
Industrial Non-Domestic Turnover: Durable (Y) Industrial Non-Domestic Turnover: Nondurable (Y) 
Industrial Non-Domestic Turnover: Capital Goods 
(Y) 

Industrial Non-Domestic Turnover: Energy (Y) 

Transportation and Storage Turnover (Y) Motor Vehicle Sales (Y) 
Domestic Cement Sales (Y) Gross Demand of Electricity (Y) 
VAT on Imports (Y) Total Tax Revenue (Y) 
Banking Sector TRY Assets: Non-Performing Loans Banking Sector FX Assets: Non-Performing Loans 
Foreign Liabilities to Residents: FX Deposits of 
Banking Sector 

LT Pvt Loans from Abroad 

Banking Sector Credit Vol: Dom Loans: TRY Loans Banking Sector Credit Vol: Inv & Dev Bks: TRY 
Dom Loans 

Banking Sector Cred Vol: Participation Banks: TRY 
Dom Loans 

Banking Sector Credit Vol: Past Due Loans in TRY 

Banking Sec Cred Vol: TRY Past Due Loans for Inv 
& Dev Bks 

Banking Sector Credit Vol: Part Banks Past Due 
TRY Loans 

Banking Sector Credit Vol: Dom Loans: FX Loans Banking Sector Credit Vol: Inv & Dev Bks: FX Dom 
Loans 

Banking Sector Cred Vol: Participation Banks: FX 
Dom Loans 

Banking Sector Credit Vol: Past Due Loans in FX 

Banking Sec Cred Vol: FX Past Due Loans for Inv & 
Dev Bks 

Banking Sector Credit Vol: Part Banks Past Due FX 
Loans 

Banking Sector: Loans [FX] Banking Sector: FX Indexed Loans [LC] 
Banking Sector: Non-Performing Loans [FX] Banking Sector: Loans [LC] 
Banking Sector: FX Indexed Loans [LC] Banking Sector: Non-Performing Loans [LC] 
Consumer Loans and Credit Cards Banking Sector Credit Vol: Deposit Money Banks' 

Loans 
Consumer Housing Loans Consumer Automobile Loans 
Individual and Corporate Credit Cards Loans Indexed to FX: Housing Loans 
Loans Indexed to FX: Automobile Loans Individual Credit Cards: YTL 
Individual Credit Cards: FX Deposit Banks TRY Loans: Corporate Credit Cards 
Total Bank Loans (Y) Non-Performing Loans, TRY 
Non-Performing Loans, FX Residents FX deposits in banking sector, USD 
Baltic Exchange Dry Index Composite CPI for Advanced Economies 
HWWI Commodity Price Index Dallas Fed House Price Index World 
World Industrial Production ex Construction CPB World Trade Volume 
Dow Jones Global Index World WTI Weekly Average Price 
BIS Narrow NEER Dollar AUD/JPY Nominal ER 
Deposit Banks FX Loans: Corporate Credit Cards  

 




