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“The more the merrier; 
the fewer, the better fare.” 

–English proverb 

 
I.   INTRODUCING OPTIMAL POOLING WITH MACHINE LEARNING 

Macro forecasting can be challenging. To improve predictions, economists often pool data 
from multiple countries to forecast country-specific macroeconomic aggregates. Pooling has 
been shown to lower forecast errors relative to predictions based on country-specific data, 
especially in settings with scarce data.2  

Although pooling is common, there is no consensus on how to select the optimal set of 
countries for a panel. There is a tradeoff between bias and variance in expanding a dataset 
to include data from additional countries. Adding countries with a similar economic structure 
(i.e., data-generating process) may reduce variance and improve forecasts, but adding 
countries with a dissimilar economic structure may introduce bias to the forecasts. Optimal 
pooling amounts to solving a version of the bias-variance tradeoff for which machine 
learning methods have specifically been developed. The aim of this paper is to use insights 
from machine learning to provide a method for selecting the optimal set of countries for 
macro panel forecasting.3 

We develop an algorithm to select the optimal set of countries to be pooled. Our 
algorithm consists of two steps. First, we estimate the similarity of the economic structure of 
two countries by measuring the extent to which the data-generating process (DGP) from one 
country matches the DGP in the other country. Second, we use cross validation techniques to 
determine the optimal set of countries to include in the panel to minimize out-of-sample 
forecast errors.  

Our method has several advantages over conventional panel pooling methods. 
Compared to conventional linear panel methods (e.g., fixed effects models with 
heterogeneous coefficients), our method can be applied to both linear and non-linear models. 
In addition, our method is designed to maximize out-of-sample, rather than in-sample, 
prediction accuracy. Our algorithm can also be applied to both small and large panels due to 
its computational efficiency. Finally, our approach of comparing the similarity of economic 
structures across countries can be used in a range of contexts. Although we focus on optimal 

 
2 Baltagi (2008) provides a survey of this literature. Baltagi & Griffin (1997), Baltagi et al. (2000), Hoogstrate et al. (2000), 
Gavin & Theodorou (2005), and Chen & Ranciere (2019) all find evidence that pooling improves forecasting accuracy.  

3 Machine learning methods have become popular in the recent macroeconomic forecasting literature as they tend to 
improve accuracy of forecasts relative to expert forecasts and traditional factor models (e.g., Tiffin (2016), Jung et al. 
(2018), Richardson et al. (2018), Smalter Hall (2018), Medeiros et al. (2018), Bolhuis & Rayner (2019)).  



 5 

pooling to improve nowcast performance, the same approach could be used to select a group 
of comparator countries for any panel data analysis.  

We are able to reduce forecast errors substantially when using our pooling method to 
nowcast real output growth. We apply the algorithm to a range of advanced economies and 
emerging market and developing countries, including Austria, Canada, Costa Rica, El 
Salvador, Germany, Iceland, Lithuania, Mexico, and Turkey. Our pooling method reduces 
forecast errors by up to 20 percent relative to the same forecast model using alternate pools, 
with the largest improvements for Austria, Canada, Costa Rica, Lithuania, and Turkey. 

II. A TWO-STEP METHOD FOR OPTIMAL POOLING 

There is a tradeoff between bias and variance when estimating an economic model with a 
pooled dataset of multiple countries. More observations provide more information, making 
forecasts more stable, thereby reducing the variance of the forecast. However, economic 
structures and the DGP of the forecast variable may differ across countries. Conditional on the 
number of observations, this difference can lead to bias in the forecast (Box 1). 

Conventional pooling methods are often impractical for macroeconomic forecasting. 
One type of pooling method is based on fixed effects (e.g., Baltagi and Griffin, 1997; Baltagi 
et al., 2000). This method pools data from different countries and estimates DGPs that are 

Box 1: The Bias-Variance Tradeoff 

The bias-variance tradeoff can be demonstrated with a linear example. Suppose we want to forecast a 
variable 𝒚𝒏,𝒕 (e.g., real GDP growth) for country n using 𝑽 predictor variables. Let 𝑿𝒏,𝒕 be the 𝑽 × 𝟏 data 
vector that summarizes these predictors at time t and denote the h-step ahead forecast of 𝒚𝒏,𝒕 as 𝒚𝒏,𝒕 𝒉. 
Suppose we have training data for two countries indexed m and n, for M and N time periods. Assume the 
properties of the predictor data are the same for both countries, and in both cases the DGP is linear, 
although the processes differ by country: 

𝑦 , = β ’𝑋 , + ϵ ,  ;  𝑖 ∈ {𝑛, 𝑚} 

Under certain conditions (Stock & Watson, 2006), it can be shown that the difference in expected squared 
errors from using data from country m to predict 𝑦 ,  using OLS would be:1 

(𝐸 𝑦 , − β ’𝑋 , ) + σ 𝑉
1

𝑀
–

1

𝑁
 

Here, the first term is the squared bias from forecasting for country n based on data from country m only. 
Note that this bias term is weakly positive, and zero if the DGP of the countries are the same. The second 
term measures the difference in forecast variance from using data from country m. Note that this variance 
term can be negative—contributing to lower forecast errors—if 𝑀 > 𝑁 (i.e., if we have more data from 
country m than country n). Taken together, we can see that pooling data from countries with additional data 
may reduce variance and improve forecast results, but adding countries with a dissimilar DGP may 
introduce bias to the forecasts. 

1 Specifically, if the regressors are orthogonal s.t. ∑ 𝑋 , 𝑋 , ’ = 𝐼  (the identity matrix), the regressors and estimate 

of β  are independently distributed, then the OLS forecast is distributed 𝑁 𝑥’β, 𝑐σ , where x is a typical predictor 

vector used to construct the forecast, and c is an arbitrary constant. 
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potentially heterogeneous by restricting the set of regression coefficients for each country.4 
This method is typically applied to linear models designed for causal inference, belonging to 
the class of best linear unbiased predictors (Baltagi, 2008). By focusing on minimizing bias, 
this approach is at one extreme of the bias-variance tradeoff and does not maximize out-of-
sample forecast accuracy. More recent pooling methods, such as those based on Bayesian 
Model Averaging or forecast combinations (Timmermann, 2006; Wang et al., 2019) weight 
forecasts from different sets of countries in the panel. These methods achieve relatively high 
forecast accuracy but are computationally expensive, even for modestly large panels.  

Our approach differs from conventional methods and leverages the benefits of machine 
learning techniques. Unlike conventional linear panel methods, our method can be applied to 
both linear and non-linear models. In addition, through cross-validation techniques, our method is 
designed to maximize out-of-sample, rather than in-sample, prediction accuracy (Annex I). Our 
algorithm can also be applied to both small and large panels due to its computational efficiency, 
and to non-linear models.5  

By using machine learning methods, our approach is specifically designed to optimize the 
bias-variance tradeoff to improve forecasting results. Our method for selecting the optimal 
set of countries for pooling consists of two steps. The first step is to determine which countries 
contribute the least bias to the panel, which requires constructing some ‘proximity’ measure of 
the DGPs of different countries. The second step is to determine the optimal number of countries 
to include in the panel, for which the expected out-of-sample forecast error is minimized. 

In the first step of our algorithm, we infer the ‘proximity’ of two countries by 
measuring the extent to which the DGP from one country is similar to that in the other 
country. Specifically, we use data from each individual country to predict real output growth 
in that same country using the machine learning model Random Forest (Annex II), yielding 
an estimate of the DGP for each country. We then compare how well the estimated DGP for 
each country predicts real output growth in the country of interest, using data only from the 
country of interest.6 We then rank the countries accordingly to the predictive power of their 
DGPs. The intuition behind this method is simple: countries with similar economic structures 
should respond similarly to economic shocks. As a result, countries with similar DGPs are 
less likely to introduce bias to the pool.7  

 
4 Specifically, this literature estimates a linear model of the form 𝑦 = 𝑍 𝛿 ′ + 𝑢  where 𝑦  is (𝑇 × 1), 𝑍 = [𝜄 , 𝑋 ], 𝑋  is 
(𝑇 × 𝐾), 𝛿 = (𝛼 , 𝛽 ), and 𝑢  is (𝑇 × 1) (Baltagi, 2008). The null hypothesis of homogeneity (𝛿 = 𝛿) is testable with a 
Chow F-test. 
5 For example, a naïve algorithm that sifts through all potential sets of 100 countries would need to consider more than 
nonillion (1030) possibilities. This stands in stark contrast with our approach in which the algorithm would only consider 100 
different sets in each of the two steps. 
6 In doing so, we follow the principle from the Bayesian literature that “(…) if the model fits, then replicated data should 
look similar to the observed data” (Gelman et al., 2014, p. 143). For a recent theoretical treatment of evaluating model fit by 
assessing its capability of generating predictions close to the observed data, see Svensson et al. (2018).  
7 Note that when the underlying DGP is linear, it is relatively straight-forward to express the similarity of countries’ 
economic structures. In this case, two countries with similar estimates of the linear coefficients tend to respond similarly to 
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Figure 1. Step 1—Proximity 

 

In the second step, we determine the optimal set of countries to pool by selecting the 
countries that maximize out-of-sample forecast accuracy. To identify the optimal set of 
countries, we cross validate each possible combination of pooled countries again using 
Random Forest  and select the set of countries that minimizes the out-of-sample mean squared 
errors of the forecasts. The bias-variance tradeoff implies that, in most cases, neither a model 
with only country-specific data, nor a model with data from a very large number of countries 
is likely to deliver the highest forecast accuracy. Rather, the optimal set of countries for 
pooling is likely to lie somewhere in between these two extremes.  

Figure 2. Step 2—Optimal Pool 

 
 

shocks. This intuition does not generalize to non-linear methods. In contrast, our method can be applied using any 
underlying type of linear or non-linear forecasting model (e.g., dynamic factor model, Random Forest, 
neural networks). 
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III. APPLYING THE METHOD 

We apply our method to a range of countries. Specifically, we use the algorithm to find 
the optimal pooling set for each of nine countries, chosen to represent different stages of 
development. For these countries, we nowcast quarterly real output growth with a panel of 
(up to) 102 countries for the period 1987–2018. The nine example countries are Austria, 
Canada, Costa Rica, El Salvador, Germany, Lithuania, Mexico, Iceland and Turkey. For 
details on indicator selection, variable transformations, and missing value imputation, see 
Annex III. 

In determining proximity, the algorithm selects countries that are similar in terms of 
economic structure. Figures 3 and 4 plot the most and least proximate countries for Turkey. 
In this case, the most proximate countries 
include emerging market countries with a 
substantial manufacturing base and that 
have experienced relatively volatile 
growth during the sample period, such as 
Mexico, Malaysia, Paraguay, Thailand, 
and Brazil. The algorithm also selects 
advanced economies with good data 
coverage, such as Japan and Finland. 
Tables 3-5 in Annex IV summarize the 
most and least proximate countries for 
each of the other eight example countries. 
In the case of Austria and Germany, the 
algorithm mainly selects advanced 
European economies. For Lithuania, it 
relies mostly on neighboring Central and 
Eastern European countries.  

Our method significantly reduces 
forecast errors relative to alternative 
pools. The algorithm produces more 
accurate forecasts for eight of the nine 
example countries. In the remaining case 
(Iceland), the algorithm indicates that the 
best forecasts are achieved using country-specific data only. Figure 5 plots the out-of-sample 
root-mean-squared error (RMSE) of the algorithm’s predictions across all possible number of 
countries (K) included in the pool for Turkey. In this case, the forecast errors initially fall 
substantially as more countries are added to the pool, with a minimum RMSE found using a 
pool of around 20 countries, where the algorithm lowers forecast errors by about 15 percent. 
After this point, however, adding more countries increases the forecast error. In line with the 
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bias-variance tradeoff, this U- shaped pattern suggests that the lower variance from more 
countries outweighs the additional bias only up to a certain point.  

Figure 5. Turkey—Relative Forecast Errors for Different Pools 

  

We observe a similar pattern for other countries. In particular, for Austria, Canada, Costa 
Rica, El Salvador, Germany, and Mexico (Figure 6), out-of-sample accuracy is maximized 
with a panel of about 20 to 60 countries. For Austria and Germany, adding too many 
countries to the pool increases forecast errors even beyond the RMSE from using only 
country-specific data. In the case of Lithuania, the algorithm selects only 5 to 10 similar 
countries. Overall, the algorithm reduces forecast errors by 10 to 20 percent relative to the 
benchmarks of one country or the full panel.  

One exception to this pattern is Iceland. In this case, any panel of more than one country 
(i.e., any additional country beyond Iceland itself) has higher forecast errors than simply 
using data from Iceland alone. This difference is perhaps unsurprising given the unique 
nature of the Icelandic economy, (e.g., its reliance on fish and aluminum exports, as well as 
its vulnerable exposure to a few large domestic companies) relative to its two most proximate 
countries, Lithuania and Croatia. 
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Figure 6. Other Countries—Relative Forecast Error of Different Pools 
(Relative RMSE (=1 for K=1), 2012–2018; Number of countries (K) in panel on x-axis) 
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IV. CONCLUSIONS 

Pooling data from multiple countries can improve the performance of economic models. 
But there is a tradeoff between bias and variance in expanding a dataset to include data from 
additional countries. Adding countries with a similar economic structure may reduce variance 
and improve forecast results but adding countries with a dissimilar economic structure may 
introduce bias to the forecasts.  

We use insights from machine learning to provide a method for selecting the optimal set 
of countries for macro panel forecasting. Our algorithm first infers the similarity of 
economic structures between countries to gauge bias and then uses cross validation 
techniques to optimize the bias-variance tradeoff and determine the optimal set of countries 
to include in the pool. We are able to substantially reduce forecast errors when using our 
pooling method to nowcast real output growth. 
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ANNEX I. MACHINE LEARNING AND CROSS VALIDATION 

At its core, machine learning is about finding the optimal degree of complexity of a 
model that maximizes out-of-sample forecast accuracy. More complex forecasting models 
tend to exhibit lower bias as they are better at capturing nuances in how predictors affect the 
forecast variable. However, complex models are also more likely to capture perturbations (or 
‘noise’) in the historical data that are uninformative for future predictions. This tendency, 
known as ‘overfitting’, increases the variance of forecasts, potentially resulting in higher 
forecast errors.  

Machine learning models typically use cross validation (CV) to find the optimal model 
parameters. To avoid overfitting, machine learning algorithms assess performance of a 
particular model configuration by predicting on a new (test) data set. With CV, the entire 
data set is split into multiple subgroups, which are all used as separate test sets. The type of 
CV used in this paper is holdout validation, which uses only one subgroup. This type is often 
used in forecast settings to assess how a model ‘would have done in the future’.  

Any machine learning algorithm—including the one proposed in this paper—can thus 
be cast as a series of steps (Bolhuis & Rayner, forthcoming): 

(a) Given a degree of model complexity, find the model configuration that maximizes 
forecast accuracy on the training data.  

(b) Forecast on the test data using this model configuration.  

(c) Across all, pick the degree of model complexity that maximizes forecast accuracy on 
the test data.  

Note that in this paper, the degree of model complexity is the number of countries to pool (K) 
and the model configuration that minimizes forecast errors for the training data is a Random 
Forest run on the panel of K countries most proximate to the one under consideration. 
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ANNEX II. RANDOM FOREST 

Random Forest (RF) is a machine learning algorithm that uses forecast combinations of 
multiple decision trees to construct an aggregate forecast. RF is one of the most popular 
algorithms available, because it is computationally efficient and requires almost no tuning of 
model parameters. This second advantage makes it an ideal algorithm for forecasting on 
time-series data with relatively few observations. 

A decision tree is an algorithm that partitions the set of predictor combinations into 
regions, making a point forecast for each of the regions. A tree creates the partition by 
splitting the training data using recurrent yes/no questions (Figure A.1). This feature makes 
decision trees an attractive prediction tool because they translate nonlinear prediction 
problems into easy-to-understand steps.  

Figure A.1. Decision Tree Example 

 

Notes: Figure plots a hypothetical decision tree nowcasting real GDP growth at time t using 
lags of real GDP growth, stock market growth, and the US term premium. Each leaf contains 
two training observations, and the trained decision tree predicts the average observed GDP 
growth of these two observations. 

RF maximizes the information content of the training data by using subsamples of 
observations and predictors. While each individual decision tree in a RF tends to have low 
forecast accuracy, the aggregate predictions of RFs tend to be surprisingly good. The reason 
for discrepancy is that each decision tree is only a partial reflection of the information in the 
training data. RF modifies the decision tree approach in two ways. First, it uses bootstrap 
aggregation (‘bagging’) by building each individual tree on only a random sample of the 
observations in the training data. Second, at each split in the tree, they use only a random 
subsample of the predictors. 
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Figure A.2. Random Forest Example 

 

 

Notes: Figure plots a hypothetical decision Random Forest nowcasting real GDP growth at 
time t using lags of real GDP growth, stock market growth, and the US term premium. Each 
tree uses different observations and considers different variables at each split. In this 
example, each leaf contains only one training observation. The trained RF predicts the 
average of the GDP growth rates of the leaves that the new observation belongs to. 
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ANNEX III. DATA 

 Our framework uses mixed frequency (monthly and quarterly) standardized 
(across countries) leading and coincident indicator data from Haver Analytics. 
As the machine learning method (Random Forest) sifts through a broad range of 
potential predictors and tends to select the most predictive ones, we do not need to 
specify the ultimate set of predictors in advance. We thus collect as many country-
specific and global indicators as possible. Tables 1 and 2 contain the set of indicators 
in the panel.8 

 We transform each indicator twice, deflate where necessary and include 
1- through 12-month lags. We use two types of transformations. In the case of 
stationary variables (e.g., capacity utilization, consumer confidence), we use the level 
and quarter-on-quarter difference. For non-stationary variables (e.g., production, 
money) we take first- and second-order log differences.  

 To use all available indicators and observations, we impute missing values using 
K-Nearest Neighbor proximity measures. This algorithm finds the 10 (‘K’) other 
observations (‘neighbors’) in the dataset that are most similar (‘nearest’) using a 
Euclidian metric. It then imputes the missing values using the median value from 
these neighbors.  

 We pre-select indicators by using ‘hard thresholding’ (Bai & Ng, 2008). For each 
indicator, we run regress the forecast variable on its lags and the indicator. We then 
select all indicators with an absolute t-statistic above 2.5. 

Table 1. Stationary Variables—Level and First Difference 
Official/policy interest rate Long term sovereign bond yield 
Gross External Debt, percent of GDP Capacity Utilization 
LFS Unemployment Rate Current Account, percent of GDP 
BoP, percent of GDP Now-Casting Index (NCI) 
World Uncertainty Index Composite PMI 
Manufacturing PMI Composite PMI, flash 
Composite PMI, manufacturing, flash Sovereign CDS Spread 
JPM Global Composite PMI JPM Global Manufacturing PMI 
US Corporate High Yield US Federal Funds Effective Rate 
US 10-year Treasury Yield World Uncertainty Index 
Sentix Economic Expectations Sentix Current Economic Situation 
CBOE VIX CBOE 10-year Treasury VIX 
Real short rate Real long rate 
Term spread (long rate—short rate) Long dollar spread (long rate—US 10 year yield) 
Real M2 growth Real US Federal Funds Rate 
Real US 10 year Real US term spread (10 year yield—FFR) 
US credit spread (high yield—10 year yield)  

 
8 We also construct the sovereign term spread, sovereign yield spread, the US sovereign term spread, and the 
US high yield spread. 
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Table 2. Non-Stationary Variables—First and Second Log Difference 
(Y: in real terms) 

Nominal ER against USD  Nominal ER against EUR  
Nominal Effective ER (38 partners)  Real Effective ER (38 partners)  
M2 Private sector debt (Y) 
Domestic debt (Y) MSCI Stock Market, total return, USD 
Gross ED, nominal, USD CPI 
Core CPI PPI 
EPI IPI 
ToT Housing Prices (Y) 
Housing Permits Industrial Production, total (Y) 
Industrial Production, manufacturing (Y) Employment 
Earnings (Y) Manufacturing Shipments (Y) 
Retail Sales, value Retail Sales, volume 
Vehicle Registrations Exports, value (Y) 
Imports, value (Y) Consumer Confidence 
Consumer Expectations Business Confidence 
Tourist Arrivals Gross Operating Surplus or Corporate Profits (Y) 
Nominal Final Domestic Demand Composite CPI for Advanced Economies 
HWWI Commodity Price Index Dallas Fed House Price Index World 
World Industrial Production ex Construction CPB World Trade Volume 
Dow Jones Global Index World WTI Weekly Average Price 
BIS Narrow NEER Dollar AUD/JPY ER 
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ANNEX IV. PROXIMATE COUNTRIES 

Table 3. Most/Least Similar Countries—Austria, Canada, Costa Rica 
Austria Canada Costa Rica 
[1] Austria 
[2] Belgium 
[3] France 
[4] Switzerland 
[5] Germany 
[6] Denmark 
[7] Italy 
[8] United States 
[9] Netherlands 
[10] Canada 
[11] Sweden 
[12] United Kingdom 
[13] Portugal 
[14] South Africa 
[15] Japan 
[16] Finland 
[17] Spain 
[18] Hungary 
[19] Greece 
[20] Croatia 
[21] Czech Republic 
[22] Brazil 
[23] Norway 
[24] Russia 
[25] Mexico 

[1] Canada 
[2] United States 
[3] France 
[4] Denmark 
[5] United Kingdom 
[6] Sweden 
[7] South Africa 
[8] Austria 
[9] Finland 
[10] Switzerland 
[11] Belgium 
[12] Hungary 
[13] Netherlands 
[14] Spain 
[15] Mexico 
[16] Germany 
[17] Australia 
[18] Italy 
[19] Greece 
[20] Portugal 
[21] Czech Republic 
[22] New Zealand 
[23] Japan 
[24] Cyprus 
[25] Brazil 

[1] Costa Rica 
[2] Japan 
[3] Nicaragua 
[4] Guatemala 
[5] Malaysia 
[6] Colombia 
[7] Honduras 
[8] Poland 
[9] Hong Kong 
[10] Australia 
[11] Taiwan 
[12] Chile 
[13] Tunisia 
[14] Thailand 
[15] Bolivia 
[16] Latvia 
[17] Philippines 
[18] Indonesia 
[19] Zambia 
[20] Cyprus 
[21] United States 
[22] Malta 
[23] New Zealand 
[24] Israel 
[25] Jordan 

[78] Ghana 
[79] Botswana 
[80] Kenya 
[81] Cameroon 
[82] Belize 
[83] Georgia 
[84] India 
[85] Ireland 
[86] North Macedonia 
[87] Kazakhstan 
[88] Sri Lanka 
[89] Dominican Republic 
[90] Namibia 
[91] Mozambique 
[92] Panama 
[93] Mongolia 
[94] China 
[95] Brunei 
[96] Qatar 
[97] Iran 
[98] Macao 
[99] Cote d’Ivoire 
[100] Azerbaijan 
[101] Kyrgyz Republic 
[102] Palestinian Territories 

[78] North Macedonia 
[79] Vietnam 
[80] Botswana 
[81] Kenya 
[82] Tanzania 
[83] Senegal 
[84] Georgia 
[85] Cameroon 
[86] India 
[87] Namibia 
[88] Sri Lanka 
[89] Kazakhstan 
[90] Belize 
[91] Dominican Republic 
[92] Mozambique 
[93] Mongolia 
[94] Panama 
[95] China 
[96] Iran 
[97] Cote d’Ivoire 
[98] Qatar 
[99] Macao 
[100] Kyrgyz Republic 
[101] Palestinian Territories 
[102] Azerbaijan 

[78] Russia 
[79] Kazakhstan 
[80] Belarus 
[81] Ireland 
[82] Iceland 
[83] Ukraine 
[84] Albania 
[85] Namibia 
[86] Panama 
[87] Serbia 
[88] Cameroon 
[89] Botswana 
[90] China 
[91] Mongolia 
[92] El Salvador 
[93] North Macedonia 
[94] Brunei 
[95] Belize 
[96] Qatar 
[97] Kyrgyz Republic 
[98] Iran 
[99] Azerbaijan 
[100] Macao 
[101] Palestinian Territories 
[102] Cote d’Ivoire 

Notes: Table presents top and bottom 25 countries that are most predictive of growth in Austria, Canada and 
Costa Rica. Data up to and including 2017, based on Random Forests with 500 trees. 
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Table 4. Most/Least Similar Countries—El Salvador, Germany, Iceland 
El Salvador Germany Iceland 
[1] El Salvador 
[2] Brazil 
[3] Morocco 
[4] Mexico 
[5] Norway 
[6] United States 
[7] New Zealand 
[8] Australia 
[9] Canada 
[10] Guatemala 
[11] Taiwan 
[12] Belgium 
[13] Honduras 
[14] France 
[15] Denmark 
[16] Nicaragua 
[17] Netherlands 
[18] Tunisia 
[19] Japan 
[20] Austria 
[21] Israel 
[22] Colombia 
[23] South Africa 
[24] Zambia 
[25] Sweden 

[1] Germany 
[2] Japan 
[3] Netherlands 
[4] France 
[5] Denmark 
[6] Austria 
[7] Italy 
[8] Switzerland 
[9] Sweden 
[10] Belgium 
[11] Mexico 
[12] Finland 
[13] Hungary 
[14] Canada 
[15] United States 
[16] Portugal 
[17] Czech Republic 
[18] Greece 
[19] Spain 
[20] Croatia 
[21] South Africa 
[22] United Kingdom 
[23] Brazil 
[24] Cyprus 
[25] Norway 

[1] Iceland 
[2] Lithuania 
[3] Croatia 
[4] Finland 
[5] Romania 
[6] Serbia 
[7] Netherlands 
[8] Guatemala 
[9] Japan 
[10] Nicaragua 
[11] Morocco 
[12] Hong Kong, SAR 
[13] Costa Rica 
[14] Honduras 
[15] El Salvador 
[16] New Zealand 
[17] Sweden 
[18] Philippines 
[19] Cyprus 
[20] Greece 
[21] Poland 
[22] Latvia 
[23] Czech Republic 
[24] Hungary 
[25] Estonia 

[78] Belize 
[79] Brunei 
[80] Tanzania 
[81] Mozambique 
[82] Ireland 
[83] India 
[84] Cameroon 
[85] North Macedonia 
[86] Belarus 
[87] Dominican Republic 
[88] Serbia 
[89] Sri Lanka 
[90] Ghana 
[91] Kazakhstan 
[92] Botswana 
[93] Mongolia 
[94] Panama 
[95] China 
[96] Iran 
[97] Qatar 
[98] Kyrgyz Republic 
[99] Azerbaijan 
[100] Macao 
[101] Palestinian Territories 
[102] Cote d’Ivoire 

[78] Ghana 
[79] Botswana 
[80] Vietnam 
[81] Kenya 
[82] Senegal 
[83] Tanzania 
[84] Georgia 
[85] Namibia 
[86] India 
[87] Cameroon 
[88] Kazakhstan 
[89] Sri Lanka 
[90] Belize 
[91] Dominican Republic 
[92] Mozambique 
[93] Mongolia 
[94] Panama 
[95] China 
[96] Iran 
[97] Cote d’Ivoire 
[98] Qatar 
[99] Macao 
[100] Palestinian Territories 
[101] Kyrgyz Republic 
[102] Azerbaijan 

[78] Panama 
[79] Senegal 
[80] Sri Lanka 
[81] Lesotho 
[82] Belarus 
[83] Kazakhstan 
[84] Cameroon 
[85] Tanzania 
[86] Paraguay 
[87] Albania 
[88] Ireland 
[89] Ghana 
[90] Brunei 
[91] Namibia 
[92] Belize 
[93] China 
[94] Mongolia 
[95] North Macedonia 
[96] Qatar 
[97] Iran 
[98] Macao 
[99] Cote d’Ivoire 
[100] Azerbaijan 
[101] Kyrgyz Republic 
[102] Palestinian Territories 

Notes: Table presents top and bottom 25 countries that are most predictive of growth in El Salvador, Germany 
and Iceland. Data up to and including 2017, based on Random Forests with 500 trees. 
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Table 5. Most/Least Similar Countries—Lithuania and Mexico 
Lithuania Mexico 
[1] Lithuania 
[2] Finland 
[3] Estonia 
[4] Bulgaria 
[5] Japan 
[6] Romania 
[7] Mexico 
[8] Germany 
[9] Latvia 
[10] Costa Rica 
[11] Malaysia 
[12] Honduras 
[13] Croatia 
[14] Argentina 
[15] Greece 
[16] Iceland 
[17] Hungary 
[18] Turkey 
[19] Singapore 
[20] Nicaragua 
[21] Luxembourg 
[22] Czech Republic 
[23] Sweden 
[24] Netherlands 
[25] Ecuador 

[1] Mexico 
[2] Germany 
[3] Japan 
[4] Canada 
[5] Hungary 
[6] United States 
[7] Netherlands 
[8] Sweden 
[9] Denmark 
[10] Czech Republic 
[11] France 
[12] Finland 
[13] Hong Kong, SAR 
[14] Belgium 
[15] Honduras 
[16] Switzerland 
[17] Guatemala 
[18] Norway 
[19] Austria 
[20] Estonia 
[21] Malaysia 
[22] Tunisia 
[23] Greece 
[24] South Africa 
[25] Italy 

[78] Mozambique 
[79] Russia 
[80] El Salvador 
[81] Ukraine 
[82] Ghana 
[83] Belarus 
[84] Ireland 
[85] Lesotho 
[86] Bahrain 
[87] Sri Lanka 
[88] Mongolia 
[89] Cameroon 
[90] Namibia 
[91] China 
[92] Brunei 
[93] Albania 
[94] North Macedonia 
[95] Belize 
[96] Qatar 
[97] Kyrgyz Republic 
[98] Azerbaijan 
[99] Iran 
[100] Macao 
[101] Palestinian Territories 
[102] Cote d’Ivoire 

[78] Bahrain 
[79] Dominican Republic 
[80] Senegal 
[81] El Salvador 
[82] Mozambique 
[83] Tanzania 
[84] Ghana 
[85] Botswana 
[86] Brunei 
[87] India 
[88] Sri Lanka 
[89] North Macedonia 
[90] Kazakhstan 
[91] Belize 
[92] Cameroon 
[93] Mongolia 
[94] Panama 
[95] China 
[96] Iran 
[97] Cote d’Ivoire 
[98] Macao 
[99] Qatar 
[100] Kyrgyz Republic 
[101] Palestinian Territories 
[102] Azerbaijan 

Notes: Table presents top and bottom 25 countries that are most predictive of growth in Lithuania and Mexico. 
Data up to and including 2017, based on Random Forests with 500 trees.  


